COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS
Authors
Abstract:
Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of order $4p$ or $p^3$, where $p$ and $q$ are primes.
similar resources
computing the products of conjugacy classes for specific finite groups
suppose $g$ is a finite group, $a$ and $b$ are conjugacy classes of $g$ and $eta(ab)$ denotes the number of conjugacy classes contained in $ab$. the set of all $eta(ab)$ such that $a, b$ run over conjugacy classes of $g$ is denoted by $eta(g)$.the aim of this paper is to compute $eta(g)$, $g in { d_{2n}, t_{4n}, u_{6n}, v_{8n}, sd_{8n}}$ or $g$ is a decomposable group of order $2pq$, a group of...
full textConjugacy Classes of Triple Products in Finite Groups
Let G be a finite group and let T1 denote the number of times a triple (x, y, z) ∈ G3 binds X, where X = {xyz, xzy, yxz, yzx, zxy, zyx}, to one conjugacy class. Let T2 denote the number of times a triple in G3 breaks X into two conjugacy classes. We have established the following results: i) the probability that a triple (x, y, z) ∈ D3 n binds X to one conjugacy class is ≥ 58 . ii) for groups s...
full textProducts of Conjugacy Classes in Finite and Algebraic Simple Groups
We prove the Arad–Herzog conjecture for various families of finite simple groups — if A and B are nontrivial conjugacy classes, then AB is not a conjugacy class. We also prove that if G is a finite simple group of Lie type and A and B are nontrivial conjugacy classes, either both semisimple or both unipotent, then AB is not a conjugacy class. We also prove a strong version of the Arad–Herzog co...
full textFINITE GROUPS WITH FIVE NON-CENTRAL CONJUGACY CLASSES
Let G be a finite group and Z(G) be the center of G. For a subset A of G, we define kG(A), the number of conjugacy classes of G that intersect A non-trivially. In this paper, we verify the structure of all finite groups G which satisfy the property kG(G-Z(G))=5, and classify them.
full textOn the Regular Power Graph on the Conjugacy Classes of Finite Groups
emph{The (undirected) power graph on the conjugacy classes} $mathcal{P_C}(G)$ of a group $G$ is a simple graph in which the vertices are the conjugacy classes of $G$ and two distinct vertices $C$ and $C'$ are adjacent in $mathcal{P_C}(G)$ if one is a subset of a power of the other. In this paper, we describe groups whose associated graphs are $k$-regular for $k=5,6$.
full textCONJUGACY CLASSES IN FINITE p-GROUPS
Of course, in that problem we have to take into account that the class sizes impose restrictions on the group structure. E.g. if the sizes are {1, p}, then the nilpotency class has to be 2. More precisely: the class sizes of a p-group G are {1, p} iff |G′| = p (Knoche; see also Theorem 3 below). But we can ask, e.g., if, given any set S ≠ {1, p} of p-powers, does there exist a group of class 3 ...
full textMy Resources
Journal title
volume 3 issue 1
pages 88- 95
publication date 2015-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023